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ABSTRACT: Extended organometallic honeycomb al-
kynyl−silver networks have been synthesized on a noble
metal surface under ultrahigh vacuum conditions via a gas-
mediated surface reaction protocol. Specifically, the
controlled exposure to molecular oxygen efficiently
deprotonates terminal alkyne moieties of 1,3,5-tris(4-
ethynylphenyl)benzene (Ext-TEB) precursors adsorbed
on Ag(111). At Tsub = 200 K, this O2-mediated reaction
pathway features high chemoselectivity without poisoning
the surface. Through mild annealing to 375 K, long-range
ordered alkynyl−silver networks incorporating substrate
atoms evolve, featuring Ag-bis-acetylide motifs, high
structural quality and a regular arrangement of nanopores
with a van der Waals cavity of ≈8.3 nm2.

On-surface synthesis1−3 under ultrahigh vacuum (UHV)
conditions opens new avenues toward preparing novel

light-element-based two-dimensional (2D) materials with one-
atom-thickness, such as graphene,4 hexagonal boron nitride,5,6

graphyne and graphdiyne-related materials,7−10 via the
bottom-up construction route.11 In this field, a commonly
adopted approach is to trigger reactions among preadsorbed
species on a substrate by thermal treatment, whereby the
adsorbates are in equilibrium with the substrate. In contrast,
research into chemical transformations involving gas-phase
species, in analogy to the Eley−Rideal type reactions,12

received less attention.13,14

Creating extended covalent or organometallic 2D architec-
tures through interfacial molecular engineering remains
challenging and is mainly limited by the simultaneous opening
of multiple reaction channels causing undesired side reactions
at elevated temperatures.15,16 It has recently been shown that
the carbon−halogen bond dissociation at metal surfaces
frequently yields carbon−metal−carbon (C−M−C) inter-
mediates,17−20 which could potentially afford regular C−C
coupled structures after further chemical conversions. Intrigu-
ingly, the C−M−C bond itself was found to be of covalent
nature21 and represents a key ingredient for hypothesized 2D
organic topological insulators.22,23 However, the formation of

regular C−M−C structures at large scales (e.g., micrometer)
via dehalogenation reactions proved difficult.19,21,24

Herein, employing complementary scanning tunneling
microscopy (STM) and X-ray photoelectron spectroscopy
(XPS) coupled with density functional theory (DFT)
modeling, we report the fabrication of alkynyl−silver−alkynyl
bonded honeycomb networks (alkynyl−Ag networks in brief)
at the micrometer scale via a novel synthetic protocol. The
employed gas-mediated approach includes a low-temperature
deprotonation step and is free from halogens. Specifically, we
found that molecular O2 efficiently deprotonates terminal
alkyne groups of 1,3,5-tris(4-ethynylphenyl)benzene (Ext-
TEB) precursors adsorbed on Ag(111) at low substrate
temperature (Tsub = 200 K). The thorough deprotonation and
the concomitant desorption of the reaction byproducts prepare
the system in a state favoring the formation of alkynyl−Ag−
alkynyl bonds via incorporation of thermally released silver
substrate atoms with high chemoselectivity upon thermal
activation (cf. also Scheme 1). In sharp contrast, when the
reactions started with coadsorbed oxygen and Ext-TEB
molecules on Ag(111), irregular structures as well as a heavily
modified surface were observed.
After exposing a submonolayer of intact Ext-TEB covered

Ag(111) surface held at 200 K to O2 (≈6000 L), dense-packed
molecular islands evolve with distinct order (Figure 1a),
differing from the nanoporous structures of self-assembled
intact molecules (cf. Figure S1).25,26 Figure 1b displays high-
resolution STM data, revealing (i) individual molecules
appearing as triangular protrusions; (ii) a molecular arrange-
ment reminiscent of ionic hydrogen bonding networks
previously observed for the Ext-TEB/Cu(111) system27 (cf.
also Figure S2); (iii) characteristic electron depletion in the
vicinity of the terminal groups27,28 discernible at the island
edges (cf. black arrow in Figure 1b). These features are fully
consistent with a terminal alkyne deprotonation scenario.27

XPS measurements were carried out to assess O2-induced
chemical changes. In comparison with the intact Ext-TEB
species, after O2 exposure (Tsub = 200 K), the C 1s main core-
level line shifts by ≈0.3 eV toward lower binding energies
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(Figure 1c). A similar tendency has been observed for on-
surface dehalogenation29 as well as CH activation reactions,30

which can be ascribed to the slight negative charging of the
molecular species upon chemically bonding to the metal
surface.27,28 Furthermore, a signal contribution developed at
283.6 eV (Figure 1c, red component), usually observed upon
C−M−C bond formation.29,31,32 Since the STM data shows
that under the employed conditions alkynyl−Ag−alkynyl
linkages have not yet formed (cf. also Figure S3), this peak
evidences the strong chemical interaction33 between the
alkynyl groups and the substrates.27,30 This low binding energy
component contributes ≈19% of the total area, indicating a
thorough deprotonation close to the ideal value of 20% (cf.
Figure S4).25 Importantly, the absence of an O 1s signature in
the XPS spectrum of the same sample (red dotted O 1s curve
in Figure 1c) excludes adsorbed oxygen species30 or oxygen-
containing reaction intermediates or byproducts (Figure S5).
Upon annealing this sample to 250 K, organometallic

dimers, trimers, and oligomers including closed hexagons
evolve (Figure 1d). These structures can be rationalized as
alkynyl−Ag−alkynyl species (Figure S6), frequently encoun-
tered on the Ag surfaces when terminal alkynes have been
deprotonated.29,34 Further annealing to 300 K entails two types
of molecular domains (cf. Figure 1e): (i) the alkynyl−Ag
networks (denoted as phase I); and (ii) noncovalent structures
comprising mainly the hexagonal Ag-bis-acetylide macrocycles
(denoted as phase II). Apparently, the energy barrier for direct
C−C coupling between alkynyl groups is higher than that for
forming an alkynyl−Ag−alkynyl linkage by incorporating a
silver adatom.
Finally, following moderate annealing at 375 K, XPS reveals

that the main peak in the C 1s spectrum shifts by ≈0.1 eV back

to the high energy side, whereas the low binding energy
component remains at 283.6 eV with similar intensity (Figure
1c), as verified by DFT calculations (Figure S4). The
corresponding STM imaging shows that regular alkynyl−Ag
networks extend to the micrometer scale, as depicted in Figure
2a. The bright protrusions in the networks correspond to
impurities as well as trapped molecules (Figure S7). Their
atomistic modeling supported by DFT calculations (Figure 2c)
is consistent with the alkynyl−Ag−alkynyl bridging motifs.
The networks terminate with zigzag edges (Figure S8) and do
not continue when crossing the steps, indicating that only the
width of the Ag(111) terrace limits the network size.
The mesoscopic extension of the alkynyl−Ag network is

confirmed by low-energy electron diffraction (LEED). The
LEED patterns show sharp spots corresponding to the network
on the entire crystal surface (cf. inset of Figure 2a and Figure

Scheme 1. Two-Step Formation of Extended Alkynyl-Silver-
Networks via Oxygen Gas Mediated Deprotonation on the
Ag(111) Surface

Figure 1. (a) Overview STM image of deprotonated Ext-TEB
molecular islands on Ag(111) prepared by dosing O2 gas at Tsub = 200
K (It = 0.1 nA, Ub = −0.5 V). (b) Zoomed-in image of an area in
panel a, featuring ionic hydrogen bonding (It = 0.1 nA, Ub = −0.2 V).
(c) C 1s and O 1s XPS spectra of a submonolayer sample subjected to
the O2 exposure, followed by subsequent annealing steps. Percentages
correspond to relative contributions from different carbon species (cf.
Figure S4). (d) Formation of alkynyl−silver dimers, trimers, and
hexamers after annealing at 250 K (It = 0.1 nA, Ub = −0.1 V). (e)
STM overview image of the same sample after annealing at 300 K.
Phase I and II represent the alkynyl−silver network and the
noncovalent alkynyl−silver hexamer domain, respectively (It = 0.1
nA, Ub = −0.5 V).
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S9b) and remain stable up to room temperature (Figure S9c),
further proving the robustness of the network.
We tested the possibility of converting the organometallic

network into a covalent sheet through further thermal
treatment. After annealing to Tann = 450 K, we did not
observe the conversion of alkynyl−Ag−alkynyl bridges into a
C−C linkage; rather, irregular structures appeared (cf. Figure
S10). This observation again points to the fact that high-
temperature annealing is not an optimal choice for the
construction of 2D covalent networks.
A zoomed-in image of the alkynyl−Ag network shows that

the pores in the network are not perfect hexagons; however,
their shape remains the same along one direction (cf. the [1̅1̅2]
direction in Figure 2b,c), whereas the neighboring columns
display a glide symmetry. Notably, the silver atoms in the
organometallic network generate a distorted kagome lattice
(Figure 2c). The adsorption registries of the Ext-TEB
backbone as well as the alkynyl−Ag−alkynyl bridges (Figure
2c) span a commensurate rectangular unit cell (a1 = 63.6 Å, a2
= 35.0 Å), which is nicely reproduced by means of extensive
DFT calculations. The 2D fast Fourier transform (2D-FFT) of
a large domain (inset of Figure 2b), where the magnified area
is embedded, also shows a rectangular reciprocal lattice,
consistent with the real-space analysis and the DFT modeling
(Figure 2c). Note that in the LEED pattern the slight
distortion of the honeycomb network induced by molecule−
substrate interaction cannot be recognized straightforwardly
(cf. also Figure S9).
In order to gain further insight into the alkyne deprotona-

tion scenario, similar doses of O2 gas were applied at Tsub =
90−100 K, leading to surface decoration with oxygen (cf.

Figure S11a). XPS characterization of this sample shows that
both molecular as well as atomic oxygen species coexist
(Figure S12b), being consistent with earlier studies.35,36

Annealing this sample to 200 K yielded reaction products
other than purely deprotonated Ext-TEBs as well as a heavily
modified surface (Figure S11). However, the reactions among
coadsorbed oxygen species and Ext-TEBs on Ag(111) do not
afford regular architectures after annealing to higher temper-
atures. Noteworthy, direct annealing of intact Ext-TEB on the
Ag(111) surface without additional gas species triggers
homocoupling of terminal alkynes.25 The marked differences
of the products depending on the recipes highlights the
importance of carefully tuning the reaction conditions and the
distinction of our approach.
In addition, we explored whether other gas molecules could

trigger a similar deprotonation reaction. It was found that
neither CO nor H2O molecules are able to deprotonate Ext-
TEBs on Ag(111). We also examined Ext-TEB layer on the
more noble Au(111) surface, and found that the system remain
unchanged after O2 and CO exposure. These results indicate
that both the gas phase species and the surface play a crucial
role for the particular deprotonation reaction.
To summarize, we introduced a potentially versatile

fabrication procedure for extended interfacial nanoporous
molecular networks reaching micrometer domain size. Our
method may have general implications in the field of interfacial
synthesis and molecular engineering and demonstrates the
promise of combining both gas-mediated chemical conversions
as well as UHV on-surface reactions for achieving novel
carbon-based 2D-sheet materials with extensive regularity and
long-range order.

Figure 2. (a) Large-scale STM image of sample annealed at 375 K, featuring a uniform, regular alkynyl−Ag domain extending at the micrometer
scale (It = 0.1 nA, Ub = −2.0 V). Inset: zoomed-in image of a small area with both phases I and II coexisting (It = 0.1 nA, Ub = −0.1 V); LEED
pattern of the alkynyl−Ag network prepared on a different Ag(111) crystal (Tmeas = 100 K, Eelectron = 39 eV). The yellow and red circles indicate the
first order diffraction spots of the network and the Ag(111), respectively. (b) High-resolution STM image of the alkynyl−Ag network (It = 0.1 nA,
Ub = −1.0 V). Inset: FFT of an area (150 nm × 150 nm) where b is embedded. (c) DFT calculated unit cell and the molecular registry of the
alkynyl−Ag network superposed with a scaled STM image. Orange dashed lines indicate the distorted kagome lattice defined by the intercalated
silver atoms coded in blue.
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