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Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum
superposition, in order to solve particular problems outperforming standard computation. They are
developed for cryptography, searching, optimization, simulation, and solving large systems of linear
equations. Here, we implement Grover’s quantum algorithm, proposed to find an element in an unsorted
list, using a single nuclear 3=2 spin carried by a Tb ion sitting in a single molecular magnet transistor.
The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric
fields only. Grover’s search algorithm is implemented by constructing a quantum database via a multilevel
Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of
universal character and can be implemented in any multilevel quantum system with nonequal spaced
energy levels, opening the way to novel quantum search algorithms.
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Introduction.—A quantum algorithm is a finite succes-
sion of unitary transformations performed on an initially
prepared quantum state that aims to generate a final
quantum state encoding the answer to a problem. The
concept has attracted considerable attention after the
discovery in 1994 by Shor describing that such an
algorithm can factorize an integer with an exponentially
smaller number of operations than any known classical
algorithm [1]. A great deal of effort has been devoted since
then to find new powerful quantum algorithms and to
implement them in actual devices. Toward this goal, a
variety of possible prototypes of a quantum bit (qubit)
have been proposed [2–6] including nuclear spin systems
[7–11], and experimental proofs of concept of quantum
algorithms have been worked out [12–21]. A number of
quantum algorithms have been formulated [22], among
which one distinguishes those specifically simulating
quantum systems, initially suggested by Feynman [23],
and those relying on quantum Fourier transforms, such as
Shor’s algorithm for integer factorization [1]. The third
main category of quantum algorithms incorporates the
amplitude amplification discovered in 1997 by Grover to
search an element in an unsorted list [24,25]. A few years
later, a theoretical study proposed the implementation of
this algorithm using a molecular magnet [26]. The Grover
algorithm first creates an initial equal superposition of
states by means of a Hadamard gate. Then it iteratively
applies a quantum oracle to negate the amplitude of the
searched state followed by a diffusion transform that inverts
each amplitude about the average. Grover’s algorithm was

proven to be quadratically faster than any classical search
algorithm: After a number of iterations close to the square
root of the length of the database, the final state collapses
onto the searched state with a high probability. In previous
experiments, the proof of concept of Grover’s algorithm
was demonstrated with nuclear magnetic resonance experi-
ments on two [19,20] or three [21] entangled qubits,
involving, respectively, four and eight states. A fundamen-
tally different approach to the Grover algorithm was
proposed in 1998 that does not make use of entangled
qubits nor of a quantum oracle [27]. Instead, it was
proposed to implement the algorithm into multilevel
systems and to proceed by controlled time evolution of
the wave functions of the different involved levels by
driving Hamiltonians. Herein, we present the implementa-
tion of this approach using a single nuclear spin I ¼ 3=2
[28]. After describing this four-level qudit, we present
the coherent manipulation of each transition. Finally, the
experimental implementation of the multilevel Grover
algorithm is described consisting of two subsequent quan-
tum gate operations: (i) A Hadamard gate creates the
quantum directory by a coherent superposition of all the
states, and (ii) the Hamiltonian of a unitary evolution will
then make the system evolve to the desired state.
Reading out nuclear spin states.—All experimental

results presented in this work were obtained via electric
transport measurements through a three-terminal single-
molecule magnet transistor. The device presented in
Fig. 1(a) consists of a bis(phthalocyanine)terbium (III)
single molecular magnet (SMM) (TbPc2), contacted to two
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gold electrodes by using the electromigration technique [29].
The hearth of the molecule is a Tb3þ ion that is eightfold
coordinated by two phthalocyanine (Pc) ligands. It exhibits
an electronic configuration ½Xe�4f8 with a total spin S ¼ 3
and a total orbital momentum L ¼ 3. A strong spin-orbit
coupling yields an electronic ground state spin with a total
angular magnetic moment J ¼ 6. In addition, the ligand field
generated by the two Pc ligands lifts the degeneracy of the
J ¼ 6 multiplet, leading to an energy gap of the order of
600 K from the ground state doublet mJ ¼ �6 compared
to mJ ¼ �5. Because the measurements are performed at a
very low temperature (electron temperature Tel ¼ 50 mK),
the electronic spin can be considered as a �6 Ising spin
with a uniaxial anisotropy axis perpendicular to the Pc
plane [Fig. 1(a)]. In addition to the electronic spin, the
monoisotopical 159Tb3þ ion carries a nuclear spin I ¼ 3=2.
The hyperfine interaction of A ≈ 24.9 mK [30] between
the electronic and the nuclear spin results in a fourfold
level splitting of each electronic spin state as presented
in the Zeeman diagram [Fig. 1(b)]. The quadrupole term

P ≈ 14.4 mK of the hyperfine coupling yields an unequal
energy level spacing between the four nuclear spin states,
resulting in three different resonance frequencies ν1 ≈
2.45 GHz, ν2 ≈ 3.13 GHz, and ν3 ≈ 3.81 GHz [Fig. 1(c)].
Off-diagonal terms in the ligand-field Hamiltonian give rise
to a finite tunnel probability from one electronic spin state
into the other, conserving the nuclear spin state. The colored
rectangles in Fig. 1(b) indicate the position of the avoided
level crossings where quantum tunneling of the magnetiza-
tion (QTM) can occur. We previously reported that the
magnetic moment of both the single electronic and nuclear
spin can be read out via transport measurements [11,31] and
that the coherent manipulation of a single nuclear spin can
be performed using electric fields only [32]. In solid state
devices, the readout and coherent manipulation of a nuclear
spin was also achieved for nitrogen-vacancy centers in
diamond [9] and an ionized 31P donor in silicon [10].
The SMM transistor is cooled down using a dilution

refrigerator. Using a 3D vector magnet, magnetic fields
μ0H∥ parallel to the easy axis of the TbPc2 are applied.
Microwave pulses of frequency νrf, amplitude Erf , and
duration τrf are applied via an antenna in the vicinity of
the device using two different microwave setups detailed in
Supplemental Material [33]. For Rabi (Fig. 2), Ramsey, and
Hahn echo experiments (see [33]), we used a monochromatic
pulse synthesized by a Rhode & Schwarz SMA100A gen-
erator with an arbitrary wave generator (AWG) external pulse
modulation. To perform Hadamard gates and demonstrate
the Grover algorithm implementation, we used a Tektronix
AWG7122B to synthesize thepulse sequences point bypoint.
Initialization, coherent manipulation, and readout of the
single nuclear spin use the following cycle: First, the external
magnetic field is swept from þ60 to −60 mT at 100 mT=s
[Fig. 1(b)]. If aQTM transition ismeasured, depending on the
field value at which it occurs, the respective nuclear spin state
can be accessed. Second, at a constant external magnetic field
μ0H∥ ¼ −60 mT, a microwave electrical pulse is applied.
Through the ac Stark effect, the hyperfine interaction A is ac
modulated. As a result, the nuclear spin undergoes an ac
effective magnetic field with amplitude Beff up to 300 mT
[32]. Finally, the resulting state is detected by sweeping
back the external magnetic field from −60 to þ60 mT at
100 mT=s. As a QTM event depends on the Landau Zener
probability [35–37], the entire sequence is rejected when no
QTM transition is detected. After repeating this procedure
1000 times for each pulse sequence, we yield the transition
probability between the nuclear states i and j:

Pi;j ¼
Ni;jP
nNi;n

; ð1Þ

where Ni;j is the number of events of initial state i and final
states j. First,we study each nuclear spin transition separately.
The transition Hamiltonian in the rotating frame is given by

FIG. 1. (a) TbPc2 molecular spin transistor schematic with
source, drain, and gate electrodes: The Pc ligand connected to the
source and drain is the readout quantum dot, allowing us to detect
the nuclear spin state carried by the Tb3þ ion of TbPc2 [11,31].
Microwave pulses allow a coherent manipulation of the nuclear
spin carried by the ion via the ac Stark effect [32]. (b) Zeeman
diagram of the molecule. The four colored squares indicate the
anticrossing positions. By sweeping back and forth the magnetic
field, a QTM is possible at these four positions. The electronic
spin conductance dependence of the transistor enables us to read
out the nuclear spin states. (c) Energy diagram of the four nuclear
spin states. The quadrupole component in the hyperfine coupling
enables an independent manipulation of each transition. We
define the frequency of the microwave pulse νn that drives the
n − 1 ↔ n transition and the detuning δn between the transition
and microwave pulse frequency. Energy level values are taken for
an external magnetic field μ0H∥ ¼ −60 mT. The color code from
bottom to top is black for nuclear spin state j−3=2i, red for
j−1=2i and the transition from j−3=2i to j−1=2i, green for j1=2i
and the transition from j−1=2i to j1=2i, and blue for j3=2i and
the transition from j1=2i to j3=2i.

PRL 119, 187702 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 NOVEMBER 2017

187702-2



Hqubit ¼ πℏðδσz þ ΩσxÞ ¼ πℏ

�
δ Ω
Ω −δ

�
; ð2Þ

where σk are the Pauli matrices, δ ¼ νqb − νrf is the detuning
between thepulse and the spin transition, andΩ ¼ gμNBeff=ℏ
is the Rabi frequency. At resonance (δ ¼ 0), the state of the
qubit will rotate around the x axis of the Bloch sphere at the
frequency Ω, resulting in a coherent oscillation between
the population of the two states of the qubit. The visibility,
defined as Vij ¼ Pi;j þ Pj;i, as a function of the pulse length
for the three frequencies of the nuclear spin state (ν1 ¼
2.452 GHz, ν2 ¼ 3.128 GHz, and ν3 ¼ 3.799 GHz), is dis-
played in Fig. 2(a). These oscillations exhibit a high-fidelity
coherent control of each nuclear spin transitions.As presented
in Fig. 2(d) and in detail in Ref. [33], the Rabi frequency
fits linearly with the microwave amplitude, as theoretically
predicted. The detuning can also be adjusted by pitching the
microwave pulse frequency. As shown in Figs. 2(b) and 2(c),
the higher the detuning, the lower the oscillation visibility
and the higher the oscillation frequency. These results show
that the molecular magnet single nuclear spin transistor
geometry is a three-qubit system, where all the dynamic
parameters can be tuned. Furthermore, we measured coher-
ence times of the order of a millisecond (see [33]), which
allow us to make more than a thousand coherent spin
manipulations before decoherence processes set in.
Grover algorithm implementation.—In order to benefit

from quantum parallelism and to implement Grover’s
research algorithm, the different transitions were driven
simultaneously using a multichromatic microwave pulse.

We make use of the generalized rotating frame [28] to
treat the interaction of a multilevel system with a multi-
chromatic pulse. Making the assumption of a near-
resonance condition for each pulse frequency and the
rotating wave approximation, the Hamiltonian Hqd of a
four-state qudit system driven by a pulse composed of three
frequencies is

Hqd ¼ πℏ

0
BBB@

0 Ω1 0 0

Ω1 2δ1 Ω2 0

0 Ω2 2δ2 Ω3

0 0 Ω3 2δ3

1
CCCA; ð3Þ

where δn and Ωn are, respectively, the frequency detuning
and the Rabi frequency of the nth transition. In this frame,
the Hamiltonian is time independent. All unitary operations
can be described via the evolution operator:

U ¼ e−iHqdt=ℏ: ð4Þ

The first gate of Grover’s algorithm, the Hadamard gate,
creates a quantum database, i.e., prepares the system in a
coherent superposition of all the nuclear spin states:

jΨðτÞi ¼ UðτÞjΨii ¼
1ffiffiffiffi
N

p
XN−1

n¼0

jni; ð5Þ

where τ is the pulse length that creates the superposition
and jΨii the initial state. In the generalized rotating frame
formalism, it is mandatory to find a combination of 2N − 1
parameters (N − 1 for Ωn, N − 1 for δn, and the evolution
time) that satisfies this equation. Note that both the phase
and population of all states must be equal. Parameters were
obtained using a variance minimization simulation of the
population and phase. The desired pulse was synthesized
point by point using a 24 GS=s AWG.
In this section, the visibility is defined as Vi;j ¼ Pi;j.

First, starting from the initial state jþ1=2i, we applied the
Hadamard gate to states jþ1=2i and j−1=2i yielding a two-
state coherent superposition. Whereas a π=2 pulse creates a
superposition of two states with a phase difference of π, the
Hadamard gate with a detuning equal to the transition rate
(δ ¼ Ω) ensures a state population and phase equality. As
shown in Fig. 3(a), this is obtained starting from the jþ1=2i
state and driving the second transition with the set of
parameter δ2 ¼ Ω2 ¼ 3.1 MHz and a pulse length of
115 ns. Next, a three-state coherent superposition is
presented in Fig. 3(b), starting from the j−1=2i state and
driving the first and second transitions, using δ1 ¼
Ω1 ¼ Ω2 ¼ 2.4 MHz. Because of the Hamiltonian’s sym-
metry, the j−3=2i and the jþ1=2i state have the same
dynamics. Finally, for the four-state superposition, we
started with the jþ1=2i state. The set of parameters

FIG. 2. (a) Rabi oscillations: The frequency of the oscillations
can be tuned from 1.5 to 8 MHz (see [33]). Each color represents
a qubit transition: from bottom to top, transitions 1, 2, and 3,
respectively, in red, green, and blue. (b) By recording the
maximum of visibility of the Rabi oscillation as a function of
the detuning, we measure the resonance shape of the three
transitions. (c) Visibility of the second state as a function of the
pulse length and frequency. The detuning increases the frequency
of the oscillation and decreases the maximum of visibility.
(d) Visibility of the second state as a function of the pulse length
and power. A linear dependence of the Rabi frequency as a
function of the square root of the pulse power is measured.
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δ1 ¼ δ2 ¼ δ3 ¼ 0; Ω1 ¼ 2.1 MHz; Ω2 ¼ 4.2 MHz; Ω3 ¼
3.1 MHz yielded a coherent superposition with a pulse
length of 140 ns [Fig. 3(c)]. However, for this coherent
superposition, each state has a different phase.
These measurements show that this system can be used

as a four-state quantum directory. The second gate of
Grover’s algorithm is used to amplify the population of a
researched state. This can be achieved by creating a
resonant condition in between the superposed state and
the researched state. Under this condition, the system will
oscillate between these two states and, after a half period
of oscillation, will be in the researched state. Note that this
unitary evolution has a

ffiffiffiffi
N

p
dependence of the period:

τ ¼
ffiffiffiffi
N

p

4Ω
ð6Þ

as detailed in Ref. [33]. Experimentally, this resonant
condition is obtained by applying a specific energy to
the researched state. In the rotating frame, this means a
specific detuning. In the general case of an N-element
database, the resonant condition is

hsjHqdjsi ¼
1

N

X
n;m

hmjHqdjni; ð7Þ

where jsi is the researched state. For three states, this
expression leads to

δs ¼
Ω1 þΩ2 þ δ1 þ δ2

3
: ð8Þ

If we apply a detuning only to the researched state, the
condition is

δs ¼
Ω1 þΩ2

2
: ð9Þ

In order to synthesize the microwave pulse sequence with
amplitude and phase control, we use a 24 GS=s AWG.
Starting from the j−1=2i state, the Hadamard gate is first
applied to create the three-state coherent superposition as

presented in Fig. 3(b). Then, the second pulse is generated
with the same power (same Ω) but with a modification
of the frequency in order to satisfy the resonant condition.
The pulse parameters (−δ1¼−δ2¼Ω1¼Ω2¼3.4MHz)
select the j−3=2i state, (δ1 ¼ Ω1 ¼ Ω2 ¼ 3.0 MHz) the
j−1=2i state, and (δ2 ¼ Ω1 ¼ Ω2 ¼ 4.9 MHz) the jþ1=2i
state [Figs. 4(a)–4(c), respectively]. In all the cases, the
population of the nuclear spin is clearly in the researched
states (respectively, a visibility of 0.9, 0.7, and 0.75). In
order to underline the resonant character of this algorithm,
we present a map of the visibility of the jþ1=2i state as the
function of the two frequencies that composed the pulse for
a constant pulse length corresponding to the half-Grover
period [Fig. 4(d)]. As expected, the visibility is maximized
when the resonant condition is reached (δ1 ¼ 0 MHz
and δ2 ¼ Ω1 ¼ Ω1 ¼ 4.9 MHz). The experimental map
compares well with the simulation obtained using the
generalized rotating frame [Fig. 4(e)], demonstrating the
implementation of the Grover search algorithm obtained
using the resonance between a single state and a three
superposed state of a single nuclear spin.
These results show how the coherent control over a

single nuclear spin embedded in a molecular spin transistor
can be gained and read out nondestructively. It leads to the
first experimental implementation of Grover’s algorithm

FIG. 3. Evolution of the nuclear spin state population as a
function of the microwave pulse length. The color code is the
same as used for Fig. 1. From left to right, we show that we are
able to create coherent superposition of two, three, and four single
nuclear spin states. For the two- (a) and three-state (b) super-
positions, we choose experimental parameters that ensure the
same phase for all the states when they have the same population,
leading to the so-called Hadamard gate.

FIG. 4. Grover evolution. Dynamic of the population in a
function of the unitary evolution pulse length. Starting from a
superposed three states [see Fig. 3(b)], obtained using a Hada-
mard gate, we show that we are able to create an oscillation
between this superposed state and a desired state. Depending on
the detuning we choose to apply in this sequence, the population
from either the black j−3=2i (a), the red j−1=2i (b), or the green
jþ1=2i (c) state increases. The Hadamard gate followed by this
unitary evolution represents the implementation of Grover’s
algorithm. Experimental (d) and theoretical (e) visibility as the
function of the two pulse frequencies at a fixed pulse duration.
The visibility is maximized when the resonant condition is
satisfied.
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using a multilevel system. The presented two-step quantum
operation can be extended to be performed on alternative
spin qubit devices. The great diversity of available molecu-
lar magnets with their inherent tunability will potentially
provide higher nuclear spin values that might make
accessible much bigger databases for the field of molecular
quantum computation.
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