



## Magneto-Structural Correlations in Self-Assembled Spin-Transition Nano-Architectures of the $[Fe_4^{II}L_4]^{n+}$ [2×2]-Grid-Type

M. Ruben,<sup>a,b</sup> E. Breuning,<sup>a</sup> J.-M. Lehn,<sup>a</sup> V. Ksenofontov,<sup>c</sup> P. Gütlich, <sup>c</sup> G. Vaughan<sup>d</sup>

<sup>*a*</sup> ISIS-ULP-CNRS UMR-700; 8 rue Gaspard Monge, F-67000 Strasbourg, France; <sup>*b*</sup>Institut für Nanotechnologie, Forschungszentrum Karlsruhe GmbH, PF 3640, e-mail: mario.ruben@int.fzk.de, D-76021 Karlsruhe, Germany; <sup>*c*</sup> IAAC; Johannes Gutenberg-Universität Mainz, Staudingerweg 9, D-55099 Mainz, Germany; <sup>*d*</sup> ESRF, BP 220, F-38043 Grenoble Cedex, France

Elsevier use only: Received date here; revised date here; accepted date here

## Abstract

The magnetism of a series of tetranuclear complexes of the  $[Fe^{II}_{4}L_{4}](BF_{4})_{8}$  [2x2]-grid-type was investigated, revealing the occurrence of spin transition behavior within this class of compounds. The phenomenon depends directly on the nature of the substituent R<sup>1</sup> of the ligand L. All Fe<sup>II</sup> ions in compounds with R<sup>1</sup> substituents favoring strong ligand fields (R<sup>1</sup> = H; OH) remain completely in the diamagnetic low spin state. Only the complex bearing R<sup>1</sup> = Ph exhibits thermally induced spin transition behavior. © 2001 Elsevier Science. All rights reserved

Keywords: supramolecular chemistry; iron complexes of N ligands; magnetic susceptibility; spin transition. PACS : 71.70.Ch

Among the accessible physical effects, the spin transition (ST) phenomenon of  $Fe^{II}$  ions is one of the perspective processes to enable molecular memory effects due to the concomitance of possible "write" (temperature, pressure, light) and "read" (magnetic, optical) parameters. [1]

In a previous communication, a [2x2] grid-type  $Fe_4^{II}$  complex (1 herein) has been described as the first tetranuclear compound exhibiting ST properties, generated by a consequent application of self-assembly on ST-systems. [2]

Since self-assembled tetranuclear  $[Fe_4{}^{II}L_4]^{n+}$ [2×2] grid type species appeared to be a promising new class of ST compounds, a series of complexes  $[Fe_4{}^{II}L_4](BF_4)_n$  **1–3** (**L** = **A**, n=8; **B**, n=4; and **C**, n=8) was synthesized and their magnetic properties were studied both in solution and in the solid state. Within the series of compounds **1-3**  $[Fe_4{}^{II}L_4](BF_4)_n$ , the coordination sphere and so the strength of the ligand field of the Fe<sup>II</sup> ions was varied by changing the substituent R<sup>1</sup> in the 2-position of the pyrimidine of the incorporated ligands L (**L** = **A**, **B**, and **C** with R<sup>1</sup> = H, O, and Ph; Scheme 1).



First evidence for a different magnetic behavior of the incorporated Fe<sup>II</sup> ions in compounds **1-3** was found in the room temperature <sup>1</sup>H-NMR spectra: complexes **1** and **2** exhibit only signals in the region expected for diamagnetic Fe<sup>II</sup> low spin (LS) complexes ( $\delta = 0$  to 10 ppm). In contrast, complex **3** shows peaks spread across a wide range ( $\delta = -20$  to 80 ppm) indicating the presence of paramagnetic species

(Figure 1). This strong shift of peaks in the proton NMR spectra is caused by the high local field typical for incorporated  $Fe^{II}$  high spin (HS) ions. [3] Furthermore, the absence of coupling patterns can be attributed to broadening by increased relaxation rates near the strong polar fields of the  $Fe^{II}$ (HS) ions.



Figure 1: <sup>1</sup>H-NMR spectra of compounds 1 (top) and 3 (bottom) in [D<sub>3</sub>]-acetonitrile (asterisk).

In solid state, the X-ray investigations of both complexes **2** and **3**, show pseudooctahedral N<sub>6</sub>-surroundings for all Fe<sup>II</sup>-ions (Figure 2). The averaged Fe-N bond lengths can be used as an indicator for the spin state, since the population of the anti-bonding  $e_g^*$  orbitals in the HS case causes an elongation of the bond length by ca. 0.2 Å. [3] Thus, complex **2** shows at 120 K four identical Fe<sup>II</sup>-N bond distances of d (Fe<sup>II</sup>-N) = 1.95 Å, close to those characteristic of the Fe<sup>II</sup>(LS) state.[4] Complex **3** exhibits at low temperature also three Fe<sup>II</sup>-ions with LS characteristics, while the fourth one remains at bond lengths typically observed for the Fe<sup>II</sup>(HS) state. Following the same argumentation, we can conclude that complex **3** presents at 293 K a situation pointing to three HS and one LS Fe<sup>II</sup> sites.



Figure 2: Top( left) and side (right) view of the single crystal X-ray investigation of complex **2** (anions, solvent molecules, and hydrogen atoms are omitted for clarity).

The solid state magnetic properties of the complexes 1-3 were examined directly by magnetic susceptibility

measurements. The diamagnetic compounds **1** and **2** did not show any magnetic moment. The magnetic properties of **3** are represented in Figure 3 in form of the  $\chi_M T/4$  versus *T* curve,  $\chi_M$  being the molar magnetic susceptibility, corrected for diamagnetic contributions ( $\chi_D = -$ 357.8 10<sup>6</sup> cm<sup>3</sup> mol<sup>-1</sup>) using Pascal's constants, and *T* the temperature.

At room temperature,  $\chi_M T/4$  is equal to 2.9 cm<sup>3</sup> K mol<sup>-1</sup> and thus in the range of values expected for four HS Fe<sup>II</sup> ions, since the spin-only value for a Fe<sup>II</sup> ion in the HS state (S = 2) is 3.0 cm<sup>3</sup> K mol<sup>-1</sup>. On lowering the temperature,  $\chi_M T/4$  progressively decreases reaching a value of 1.4 cm<sup>3</sup> K mol<sup>-1</sup> at 30 K; below this temperature,  $\chi_M T/4$  drops down. This can be attributed to zero-field splitting. [4] No hysteresis was detected, which is in line with the very gradual spin transition apparently arising from very weak cooperative interactions. [5]

We also investigated the magnetic properties of **3** under pressure. Pressure dramatically affects the SC curve, decreasing the  $\chi_{\rm M}T/4$  values over the whole temperature range (e.g. by 0.5 cm<sup>3</sup> K mol<sup>-1</sup> at 300 K and 8.4 kbar). This corresponds to a shift of the SC curve to higher temperatures as a result of the lower volume for the LS Fe<sup>II</sup> ions.



Figure 3: Magnetic susceptibility *versus* temperature plot of complex **3** at two different pressures.

The occurrence of spin transition in [2x2] grid-like complexes of the type  $[Fe^{II}_{4}L_{4}](BF_{4})_{n}$  depends directly on the nature of the substituent  $R^{1}$  in the 2-position of the ligand **L**. Compounds **1** and **2** with substituents in this position favoring strong ligand fields ( $R^{1} = H$ ; O) remain completely in the LS state at all temperatures studied. Only the complex **3** bearing a substituent which attenuates the ligand field sufficiently by steric effects ( $R^{1} = Ph$ ), exhibits, although incomplete, temperature triggered spin transition.

References

- [1] O. Kahn; Chemistry in Britain, March (2000) 33.
- [2] E. Breuning et. al., Angew. Chem. Int. Ed. 14 (2000) 2504.
- [3] E. König, "Nature and Dynamics of the Spin-State Interconversion in Metal Complexes", Vol. 76, Springer, Berlin, Heidelberg, (1991).
- [4] Crystallographic data under CCDC reference number: 213092.
- [5] R. L. Carlin, "Magnetochemistry", Springer, Berlin, (1986).
- [6] P. Gütlich et. al. Angew. Chem. Int. Ed. Engl. 33, (1994) 2024.