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Abstract: Hierarchical self-assembly of
complex supramolecular architectures
allows for the emergence of novel

array of coordination sites that sets the
stage for a second assembly step.
Indeed, binding of La™ ions to 1 and

of Ag'ions to 2 leads to a 1D columnar
superstructure 3 and to a wall-like 2D
layer 4, respectively, with concomitant

properties at each level of complexity.
The reaction of the ligand components
A and B with Fe" cations generates the
[2x2] grid-type functional building
modules 1 and 2, presenting spin-tran-
sition properties and preorganizing an

Introduction

A major present thrust in supramolecular chemistry con-
cerns the processes underlying self-organization, the goals
being to understand their origin and operation, to induce
the emergence of novel properties at each level of complexi-
ty, and to achieve their implementation in artificial function-
al systems. !
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modulation of the magnetic properties
of 1 and 2. Thus, to each of the two
levels of structural complexity generat-
ed by the two sequential self-assembly
steps corresponds the emergence of
novel functional features.

supra-

The generation of organization levels of increasing com-
plexity, diversity and functionality relies on a set of basic
building blocks and subunits, interconnected through a mul-
titude of relatively weak, non-covalent interactions (e.g. hy-
drogen, van der Waals and coordinative bonding, etc.).? It
rests on the progressive build-up of more and more complex
entities by multiple, sequential and hierarchical self-organi-
zation steps, following a conditional pathway, each step set-
ting the base for the next one. Hierarchical self-organiza-
tion™* may be driven by more or less pronounced positive
cooperativity, up to a phase change, such as the formation of
a liquid crystalline or a solid state.

In recent years, more and more powerful self-assembly
strategies have been developed for the controlled access to
a variety of nano-sized objects of increasing complexity.
Much work was addressed to the understanding and manip-
ulation of the parameters which give access to a variety of
nano-architectures, in particular of metallo-supramolecular
type, such as rods, squares, circles, cages, clamps, emphasiz-
ing mainly structural aspects like size, symmetry and chirali-
ty of the products.”! Less attention has been paid to self-as-
sembled architectures exhibiting discrete functional proper-
ties (switching, moving etc.).

Such functional architectures may derive from three prin-
cipal routes: i) the functionality may result as “emerging”
property from the assembly of the building modules; ii) the
functionality may be encoded on the isolated modules and
persist as unchanged property in the self-assembled architec-
ture or iii) the two approaches above may also partially
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merge, since the molecular surroundings can alter or tune
an original, “module-based”, functionality to a large extent
and lead to the gradual appearance of new functional fea-
tures.”!

Herein, we report on the hierarchical self-assembly of the
magnetic molecular architectures 3 and 4. It involves in a
first step the assembly of the ligand components A and B
and Fe" ions into the supramolecular spintronic modules!*”!
1 and 2, displaying magnetic properties based on the spin-
transition phenomenon and preorganizing an array of bind-
ing sites that sets the stage for a second step. This newly
gained “collective” property is modulated through a subse-
quent, higher order self-assembly process induced by bind-
ing of a new set of cations and generating the 1D and 2D ar-
chitectures 3 and 4, respectively. The structural and magnet-
ic properties of the four architectures 1-4 were investigated
in detail at the two hierarchical organisation levels.

Results and Discussion

Synthesis and structures of the [2x2] grid-type complexes
[Fel'L,]**, 1 and 2: It has been shown that tetranuclear mo-
lecular systems of the [2x2] grid type with four precisely lo-
cated transition metal ions are accessible by self-organisa-
tion and exhibit interesting electrochemical, magnetic and
optical properties.®” The nature of the substitutions of the
ligand can induce for M" = Fe the occurrence of spin tran-
sition in the [Fel'L,]** units."”

We designed ligand components A and B, which should
be able to undergo two hierarchical self-assembly steps
through the stepwise coordination of different metal ions,
such as Fe' and La™ (for A) or Fe' and Ag' (for B), gener-
ating first the respective [2x2]Fe} grids, as building mod-
ules, and interconnecting thereafter these units via coordina-
tion of a second type of metal ion. In a earlier study, a relat-
ed ligand contained sites for a second assembly step through
hydrogen bonding.'"” The synthesis and first results of the
coordination behaviour of the ligands A and B were report-
ed earlier.'!

Abstract in French: L’autoassemblage hiérarchisé d’architec-
tures supramoléculaires conduit a I'émergence de nouvelles
propriétés a chaque niveau de complexité. La réaction des li-
gands A et B avec des cations Fe génére des modules fonc-
tionnels de type grille [2x2], 1 et 2, qui présentent des pro-
priétés de transition de spin, et prédisposent un ensemble de
sites de coordination pour une deuxiéme étape d’assemblage.
En effet, la complexation d’ions La™ par 1 et d’ions Ag' par
2 conduit respectivement a une superstructure colonnaire 3
1D et a un arrangement en feuillet 2D, avec une modulation
concomittante des propriétés magnétiques de 1 et 2. Ainsi, a
chaque niveau de complexité structurale généré par les deux
étapes d’autoassemblage séquentiel, correspond I’émergence
de nouvelles propriétés fonctionnelles.
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The compounds, [Fe,A,](BF,)s (1) and [Fel'B,](BF,)s (2),
were obtained by assembly from the corresponding ligand A
or B and [Fe(BF,),] x 6 H,O in acetonitrile at reflux for eight
hours, followed by precipitation with diisopropyl ether
(Figure 1). The composition of 1 and 2 was confirmed by
FAB-mass spectrometry and elemental analysis. No evi-
dence for higher-mass polymeric products was found in ES-
mass spectrometry investigations.

The 'H NMR spectra of 1 and 2 at 298 K both exhibit
fourteen singlets covering a range from 6 =—10 to 150 ppm.
The number of signals is indicative of C,, symmetry of the
coordinated ligands A or B and of a hindered rotation of
the phenyl groups with free rotation of the pyridine units.
The spread-out chemical shift domain covered by the signals
results from paramagnetic contact shifts of Fe''(HS) ions.'”

The structure of [Fe[B,]*" (2) (as the perchlorate com-
pound) was determined by single crystal X-ray diffraction at
120 K (Figure 2). It consists of a tetranuclear complex in
which each of the Fe ions is in a pseudo-octahedral ar-
rangement with a pronounced axial distortion. Each metal
ion is surrounded by six nitrogen atoms from the pyrimidine
and bipyridine groups. The Fe—N bond lengths of d(Fe—
N)=1.898(6)-2.103(6) A indicate that at 120 K all four Fe"
ions are in their LS state.’! A single chloride anion, coming
presumably from impurities of the [Fe(ClO,),]x6H,0O salt
used, is bound in the central cavity of the [Fel'B,]** cation,
while the remaining seven ClO, anions are found together
with solvent and water molecules in the crystal lattice
around the complex cation.

The four ligands B are bound to the Fe™ ions by their ter-
pyridine-type coordination sites formed from lateral four
pyridine and the central pyrimidine groups, while the eight
4-pyridyl units point orthogonally above and below the
main molecular plane containing the four metal ions. The
central C-C axes connecting the terpy moieties with the
exo-directed 4-pyridines deviate by 5.2 up to 29.5° from
ideal orthogonality. As a consequence, all pyridine groups
are slightly bent outside, and the free nitrogen atoms are
easily accessible for further coordination.

The first self-assembly process incorporates the four li-
gands B in the complex [Fel'B,]** (2) and, at the same time,
pre-organizes them in a disposition which enables further

© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim —95


www.chemeurj.org

CHEMISTRY—

J.-M. Lehn, P. Giitlich et al.

A EUROPEAN JOURNAL

ig_‘“}..

_—
self-assembly | self-assembly 11

component connector module connector
self-assembly | self-assembly II

non-magnetic spin transition

magnetism

3 to a [{FelAJ{(La™}(CIO,),
HFeA-(Ln"). "™ composition with additional six-
teen water and two acetonitrile
molecules. Single crystal X-ray
investigations reveal an one-di-
mensional columnar motif in-
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volving aligned alternating
[Fel(A),** and coordinated

architecture

La™ ions. The data reveal the
tetranuclear Fe}' modules, inter-
connected in a linear fashion by
2D the coordination of a La™ ion
e to two four-fold sets of 3-pyrid-
yl groups above and below the

Fe}' plane of two neighbouring
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* the bad quality of the crystals
modulation of and despite several attempts to
magnetism

improve the quality of the data,

Figure 1. Two-step hierarchical self-assembly of metallosupramolecular architectures with emergence of mag-
netic properties. From ligands A and B to the magnetic [2x2] grid-type building modules [Fel'A,]** (1) and
[Fel'B,]** (2) (self-assembly 1), and on to the columnar 1-D architecture {[-Fe}A,]-(La™),},"*(3) and the wall-
like 2-D architecture {[-Fe{'B,]-(Ag'),},"** (4) (self-assembly II). Red spheres: Fe", green spheres (top): La',
green spheres (bottom) Ag'. Bottom: emerging magnetic properties.
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the resulting elevated R factor
does not allow a more detailed
discussion of the molecular
structure of {[FeA,]-
(La™),},"'* (3). However, the
overall motif described above is
secure.

To achieve a second order as-
sembly of module [Fel'B,]**
(2), a solution of its BF,” salt in
acetonitrile was layered with a
solution of methanol containing
six equivalents of AgBF,. After

Figure 2. Top and side view of the [2x2] grid-type complex [Fe[B,]** (2) in the crystal structure (anions, sol-
vent molecules, hydrogen atoms and the rotational disorder of the pyridine groups are omitted for clarity).

metal ion coordination to the building module generated,
for a higher order second self-assembly step.

The analytical data for the complex [Fel!A,** (1) are
very similar to those obtained for complex 2 (see Experi-
mental Section) and point to an identical composition.

Synthesis and structures of the extended coordination archi-
tectures {[FejA,]-(La™),},"* (3) and {[Fe{B,-(Ag".”"
(4): The generation of a second order coordination assembly
was achieved by connecting the tetranuclear grid modules
[FeA,** (1) through binding of lanthanum(ur) ions. The
reaction was performed by layering an acetonitrile solution
of 1 (as its ClO,~ salt) with a six-fold excess of a [La(ClO,);]
in methanol resulting in deep-green, triangular-shaped crys-
tals of assembly 3. Elemental analysis of these crystals point

9% — © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

several  weeks, pine-green
prisms of compound 4 had
grown at the diffusion interface
. .}-. of the two solutions. The over-

all composition of the com-
e pound was determined as
{[FeyB.]-(Ag)} (BF,).(SiFs) by
elemental analysis and its struc-
ture was determined by X-ray
investigations of the crystalline
material. The structure of the cationic [FelB,]** subunits
within 4 is of [2x2] grid type, very similar to that deter-
mined for 2 with Fe—N bond lengths of d(Fe—N)=1.890(7)—
2.092(6) A, indicating the presence of exclusively Fe"(LS)
ions at 120K. All eight exo-4-pyridyl groups of each
[Fe'B,]** unit were coordinated to Ag' ions (Figures 1 and
3). Attempts to dissolve the complex in polar solvents
(DMF, DMSO) resulted in the break-up of 4 into the tetra-
nuclear [Fe}'B,]**units and solvated Ag' ions.

The Ag'ions are dicoordinated in an approximately linear
coordination manner with d(Ag—N) = 2.130(12)-
2.228(14) A; a(N-Ag-N) = 166.4(7) and 168.8(8)°, and in-
terconnect successive tetranuclear [Fel'B,J** units through
four pyridine-Ag'—pyridine bridges. Following this coordina-
tion scheme, an infinite coordination polymer is generated

www.chemeurj.org Chem. Eur. J. 2005, 11, 94—100
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Figure 3. X-ray single crystal structure of {[Fe{'B,]-(Ag"),},** (4) displaying the wall-like 2D interconnection
of the [Fe['B,]** [2x2] grid-type building modules (red) by the Ag' ions (green): a) cross section; b) frontal el-
evation of the 2D wall-like array (anions and solvent molecules are omitted for clarity; carbon: grey, nitrogen:

blue, iron: red).

as a meander-like interwoven, two-dimensional network
(Figure 3). Within this wall-like array, the [Fe['B,]** building
modules are aligned in rows at 2.15 nm apart, while the dis-
tance between two neighbouring “walls” is about 1.56 nm.
The central and peripheral cavities within the [FelB,J**
units, but not the hollow space around the Ag' ions, are
filled with the BF,™ anions and solvent molecules (Figure 3).

Magnetic properties of the units 1 and 2 and of the assem-
blies 3 and 4: The magnetic properties of module
[Fel’A,](ClO,)s (1) and of the extended assembly {-[Fe['A,]-
(La"™)}(C1O,4) 11y (3) are represented in Figure 4a as yy7/4
versus T plots, yy being the molar magnetic susceptibility,
corrected for diamagnetic contributions (yp, = —357.8x
107% cm*mol ') using Pascal’s constants, and 7 the tempera-
ture. At room temperature, xyI/4 of 1 is equal to
3.2cm’Kmol ™}, close to the spin-only value expected for
four high-spin Fe" ions. On lowering the temperature, y\7/4
progressively decreases reaching a value of 1.2 cm®*Kmol™!
at 30 K, calling for the presence of one to two HS Fe" (a sit-
uation already found in other [Fe['L,]** units).” Below this
temperature, y\ /4 drops, which can be attributed to zero-
field splitting of the Fe''(HS) ions.' The very gradual in-
crease and the absence of any hysteresis in the y\7/4 versus
T plot suggests that the cooperative interactions accompany-
ing spin transition are rather weak. This was already ob-
served for other members of this class of compounds and is
apparently characteristic for the spin transition behaviour of
these systems.”'¥l The magnetic properties of 1 (as well as
of 2, below) emerge from the assembly and are absent in
the components, the ligands and metal ions.

Upon aligning the [Fel'A,]** modules into the one-dimen-
sional coordination polymer {-[Fe}'A,]-(La™)},(ClO,)1 (3).
the unit-based spin transition behaviour persists, but the
whole magnetic curve is shifted towards stabilization of the
LS state (Figure 4a). At low temperature, below 50 K, a pla-

Chem. Eur. J. 2005, 11, 94—100 www.chemeurj.org

© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

(AZ)Jn(BF,) 1 (4) are repre-
sented in Figure 4b. At room
temperature, yy7/4 for 2 is
equal to 2.4cm*Kmol! and
thus in the range of values ex-
pected for three HS and one LS

Y T74 1 cmPmol 'K
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Figure 4. y T/4 versus temperature plots of a) the module [Fel'A,](ClO,)s
(1) and the columnar assembly {[Fe[A,]-(La")}(ClO,);1, (3); b)the
module [FelB,J(BF,)s (2) and the wall-like assembly ({-[Fe}B,]-
(A2l (BF) 20 (4).
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Fe™ ions; it decreases on lowering the temperature reaching
a value of 1.4 cm*Kmol™" at 30 K, calling for the presence
of two Fe''(HS). The magnetic data show a very gradual
and, in comparison with 1, a very incomplete spin transition
process as already observed for other members of this class
of compounds.”

The magnetic behaviour of the two-dimensional, wall-like
assembly 4 {[Fe}B,]-(Ag")s}.(BF,)q2), is shown in Figure 4b.
At room temperature, yy7/4 of 4 is equal to 1.4 cm*Kmol !
which is significantly lower than found for the constituting
complex 2 itself and points at a magnetic situation involving
two Fe''(LS) and two Fe(HS) ions. On lowering the tem-
perature the magnetic moment of 4 remains almost un-
changed before showing a slight increase to yy1/4
=1.5cm?*Kmol ! at T=30 K. Below that temperature, once
more, a sharp drop due to the zero field splitting of Fe"(HS)
ions is observed.™!

The spin transition in the assembly 4 is, in comparison
with module 2, inhibited over the whole temperature range
studied, possibly due to steric hindrance in the interconnect-
ed, two-dimensional network. Since the conversion of
Fe"(LS) to Fe"(HS) is accompanied by a volume increase,
each spin transition would have to expand against the, more
rigid, 2D network of 4.14%! As a result, the magnetic
moment remains close to the value of the non-bridged
“monomer” 2 at low temperature (30 K). The observed
slight decrease of the yyT versus T curve between 300 and
150 K may be due to weak antiferromagnetic intramolecular
interaction as already observed in the analogous [Co}L,]**
compounds.®™ The increase of yT below about 150 but
above 30 K, might result from ferromagnetic intermolecular
exchange coupling between the neighbouring 2D-networks
(Figure 4b), although such coupling should be very weak
over a distance of 15 A.

Conclusion

The present results show that hierarchically ordered self-as-
sembly processes using suitably designed molecular compo-
nents can be implemented to construct the metallosupramo-
lecular [2x2] grid-type modules [Fe,A,]** (1) and [Fe,B,]**
(2), presenting spin transition behaviour and displaying a
collectively generated coordination array, that prepares the
structural prerequisites enabling 1 and 2 to undergo a
second self-assembly process. This second process leads in
both cases to an extended architecture displaying either a
one-dimensional columnar {-[FelA,]-(La™)},"'* (3), or a
two-dimensional wall-like {-[Fel'B,]-(Ag"),},"** (4) arrange-
ment. In both higher-order architectures, the magnetic be-
haviour of the [Fel'L,]** modules exhibits a progressive hin-
drance of the spin transition process with increasing dimen-
sionality.

The generation and variation of a certain molecular func-
tionality (here magnetism) at different organisational levels,
as realized here in the supramolecular spintronic modules
1/2 and arrays 3/4, show how the architectural parameters

98 —— © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

feed-back actively on intrinsic functionalities of complex
supramolecular assemblies. It relates to the progressive
build-up of functional nanostructured supramolecular devi-
ces by sequential self-organization, with concomitant emer-
gence of novel (optical, electronic, magnetic) properties at
different levels of system complexity.!"

Experimental Section

Synthesis of complexes 1 and 2: A solution of ligand A" (30 mg,
48 umol) (or B'"Y) and [Fe(BF,),] x 6H,O (16 mg, 48 umol) in acetonitrile
(50 mL) was stirred under reflux for 12 h. Complex 1 (or 2) was isolated,
respectively, as dark green solid by precipitation with diisopropyl ether in
quantitative yields (18.0 mg).

The CIO,salts of 1 and 2 were synthesized by the same procedure by
using [Fe(ClO,),] x6H,0. The products obtained exhibit identical spec-
troscopic properties as the BF, salts.

[Fel!A,J(BF,); (1): 'HNMR (200 MHz, CD;CN, 298 K): 6=118.6, 62.4,
55.2, 49.9, 47.3, 42.8, 14.5, 7.8, 7.1, 5.6, 4.3, 4.0, 0.7, —7.3; FAB-MS
(NBA): m/z: 3132.4 [M—3BF,]*, 3046.5 [M—4BF,]*, 2959.6 [M—5BF,]*,
2871.5 [M—6BF,]T; UV/Vis (acetonitrile, ¢ in 10° cm’mol™'): 1=274
(189), 365 (41.6), 497 (14.8), 662 nm (15.3); elemental analysis calcd (%)
for C,40H,04N3BgFe,F3, x 19H,0: C 51.45, H 3.83, N 12.00; found: C
51.47, H 3.36, N 11.70 (for the perchlorate salt C,qH;0N3,ClgFe 05, %
3CH;CNx4H,0: C 54.05, H 3.31, N 13.29; found: C 54.80, H 3.52, N
13.18.).

[Fel'B,](BF,); (2): '"HNMR (200 MHz, CD;CN, 298 K): 6=145.0, 109.8,
60.4, 52.7, 47.6, 45.9, 41.3, 13.5, 8.1, 4.0, 3.6, 3.5, —1.4, —6.6; FAB-MS
(NBA): mlz: 3284.9 [M—BF,]", 3219.8 [M—2BF,|*, 3131.8 [M—3BF,]*,
3045.8 [M—4BF,]*, 2958.8 [M—5BF,]*, 2871.8 [M—6BF,]*; UV/Vis (ace-
tonitrile, & in 10° cm?mol™'): A=271 (147), 335 (62.4), 380 (57.0), 496
(9.7), 666nm  (8.7); elemental analysis caled (%) for
C,60H,04N3,BgF3,Fe, x 6 CH;CN x SH,0: C 55.40, H 3.57, N 14.27; found:
C 55.18, H 3.43, N 13.94 (for the perchlorate salt C,¢H;(,N3,ClgFe, O, x
10CH,CN x2H,0: C 55.77, H 3.59, N 15.18; found: C 55.40, H 3.63, N
15.11).

Synthesis of assemblies 3 and 4

{-[FelfA,]-(La")},(C10,) 1)s (3): A solution of 1 (as its ClO,” salt; 5 mg,
1.43 umol) in CH;CN was layered with a solution containing a six-fold
excess of [La(ClO,);] (3.8 mg, 8.6 umol) in methanol (3 mL). After two
days, triangle-shaped dark-green prisms of compound 3 were found float-
ing on the solution. An amount of 5.2 mg (1.3 umol, 92%) of the crystal-
line material of 3 was collected and directly used in the structural and
magnetic  investigations. Elemental analysis caled (%) for
Ci0H 04N Fe LaCly O, x2CH;,CN x 16 H,O: C 45.79, H 3.33, N 11.07;
found: C 44.90, H 3.41, N 10.58.

{-[Fe}B,]-(Ag")}.(BF) 1z, (4): A solution of 2 (5mg, 1.47 pmol) in
CH;CN was layered with a solution of a six-fold excess of AgBF,
(1.8 mg, 8.84 umol) in methanol (3 mL). After several weeks right-angled
pine-green prisms of compound 4 were found at the diffusion interface of
the two solutions. An amount of 4.8 mg (1.1 pmol, 75%) of the crystal-
line material of 4 was collected and directly used in the structural and
magnetic  investigations. Elemental analysis caled (%) for
Cie0H104N3,Fe AgyB SiF,x 12 CH;CN x2H,0: C 47.34, H 3.11, N 13.20;
found: C 46.95, H 3.22, N 13.01.

Magnetic measurements: They were carried out with a SQUID magneto-
meter working in the 4.2-300 K temperature range. The applied magnetic
field was 1 Tesla. FAB mass spectra were performed on a Fisons TRIO-
2000 (Manchester) and a Micromass AUTOSPEC-M-HF spectrometer
using 3-nitrobenzylic alcohol as matrix. Microanalyses were carried out
by the Service de Microanalyse, Faculté de Chimie, Strasbourg.

X-ray structural analysis of 2 and 4: The data for both compounds were
recorded at 120.0(2) K on Beamline ID11 at the European Synchroton
Research Facility in Grenoble. Phi rotation images (1 s per frame) were
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recorded with a Bruker Smart 6500 camera and a Si(111) monochromat-
ed wavelength of 0.45085 A. The data were integrated with the Bruker
data reduction suite Saint and the absorption correction applied via
SADABS. Structure solution was performed by direct methods
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