Hierarchical Self-Assembly of Supramolecular Spintronic Modules into 1D- and 2D-Architectures with Emergence of Magnetic Properties

Abstract: Hierarchical self-assembly of complex supramolecular architectures allows for the emergence of novel properties at each level of complexity. The reaction of the ligand components A and B with FeII cations generates the [2×2] grid-type functional building modules 1 and 2, presenting spin-transition properties and preorganizing an array of coordination sites that sets the stage for a second assembly step. Indeed, binding of LaIII ions to 1 and of AgI ions to 2 leads to a 1D columnar superstructure 3 and to a wall-like 2D layer 4, respectively, with concomitant modulation of the magnetic properties of 1 and 2. Thus, to each of the two levels of structural complexity generated by the two sequential self-assembly steps corresponds the emergence of novel functional features.

Keywords: functional emergence · metallosupramolecular grids · self-assembly · spin transition · supramolecular chemistry

Introduction

A major present thrust in supramolecular chemistry concerns the processes underlying self-organization, the goals being to understand their origin and operation, to induce the emergence of novel properties at each level of complexity, and to achieve their implementation in artificial functional systems.[1]

The generation of organization levels of increasing complexity, diversity and functionality relies on a set of basic building blocks and subunits, interconnected through a multitude of relatively weak, non-covalent interactions (e.g. hydrogen, van der Waals and coordinative bonding, etc.).[1-2] It rests on the progressive build-up of more and more complex entities by multiple, sequential and hierarchical self-organization steps, following a conditional pathway, each step setting the base for the next one. Hierarchical self-organization[3,4] may be driven by more or less pronounced positive cooperativity, up to a phase change, such as the formation of a liquid crystalline or a solid state.

In recent years, more and more powerful self-assembly strategies have been developed for the controlled access to a variety of nano-sized objects of increasing complexity. Much work was addressed to the understanding and manipulation of the parameters which give access to a variety of nano-architectures, in particular of metallo-supramolecular type, such as rods, squares, circles, cages, clamps, emphasizing mainly structural aspects like size, symmetry and chirality of the products.[5] Less attention has been paid to self-assembled architectures exhibiting discrete functional properties (switching, moving etc.).[5]

Such functional architectures may derive from three principal routes: i) the functionality may result as “emerging” property from the assembly of the building modules; ii) the functionality may be encoded on the isolated modules and persist as unchanged property in the self-assembled architecture or iii) the two approaches above may also partially
merge, since the molecular surroundings can alter or tune an original, “module-based”, functionality to a large extent and lead to the gradual appearance of new functional features.[7–9]

Herein, we report on the hierarchical self-assembly of the magnetic molecular architectures 3 and 4. It involves in a first step the assembly of the ligand components A and B and FeII ions into the supramolecular spintronic modules[9,10] 1 and 2, displaying magnetic properties based on the spin-transition phenomenon and preorganizing an array of binding sites that sets the stage for a second step. This newly gained “collective” property is modulated through a subsequent, higher order self-assembly process induced by binding of a new set of cations and generating the 1D and 2D architectures 3 and 4, respectively. The structural and magnetic properties of the four architectures 1–4 were investigated in detail at the two hierarchical organisation levels.

Results and Discussion

Synthesis and structures of the [2×2] grid-type complexes [FeII(L4)]+*, 1 and 2: It has been shown that tetranuclear molecular systems of the [2×2] grid type with four precisely located transition metal ions are accessible by self-organisation and exhibit interesting electrochemical, magnetic and optical properties.[7–9] The nature of the substitutions of the ligand can induce for M0 = Fe the occurrence of spin transition in the [FeII(L4)]+* units.[9]

We designed ligand components A and B, which should be able to undergo two hierarchical self-assembly steps through the stepwise coordination of different metal ions, such as Fe0 and LaIII (for A) or FeII and Ag+ (for B), generating first the respective [2×2]FeII grids, as building modules, and interconnecting thereafter these units via coordination of a second type of metal ion. In an earlier study, a related ligand contained sites for a second assembly step through hydrogen bonding.[10] The synthesis and first results of the coordination behaviour of the ligands A and B were reported earlier.[11]

The compounds, [FeA,B](BF4)6 (1) and [FeB3B](BF4)6 (2), were obtained by assembly from the corresponding ligand A or B and [Fe(BF4)3]×6H2O in acetonitrile at reflux for eight hours, followed by precipitation with diisopropyl ether (Figure 1). The composition of 1 and 2 was confirmed by FAB-mass spectrometry and elemental analysis. No evidence for higher-mass polymeric products was found in ES-mass spectrometry investigations.

The 1H NMR spectra of 1 and 2 at 298 K both exhibit fourteen singlets covering a range from δ = −10 to 150 ppm. The number of signals is indicative of C2v symmetry of the coordinated ligands A or B and of a hindered rotation of the phenyl groups with free rotation of the pyridine units. The spread-out chemical shift domain covered by the signals results from paramagnetic contact shifts of FeII(HS) ions.[12]

The structure of [FeB3B]+* (2) (as the perchlorate compound) was determined by single crystal X-ray diffraction at 120 K (Figure 2). It consists of a tetranuclear complex in which each of the FeII ions is in a pseudo-octahedral arrangement with a pronounced axial distortion. Each metal ion is surrounded by six nitrogen atoms from the pyrimidine and bipyridine groups. The Fe–N bond lengths of d(Fe–N) = 1.898(6)–2.103(6) Å indicate that at 120 K all four FeII ions are in their LS state.[9] A single chloride anion, coming presumably from impurities of the [Fe(ClO4)2]SC“DP6H2O salt used, is bound in the central cavity of the [FeII(BF4)6]4+ cation, while the remaining seven ClO4 ions are found together with solvent and water molecules in the crystal lattice around the complex cation.

The four ligands B are bound to the FeII ions by their terpyridine-type coordination sites formed from lateral four pyridine and the central pyrimidine groups, while the eight 4-pyridyl units point orthogonally above and below the main molecular plane containing the four metal ions. The central C–C axes connecting the terpy moieties with the exo-directed 4-pyridines deviate by 5.2 up to 29.5° from ideal orthogonality. As a consequence, all pyridine groups are slightly bent outside, and the free nitrogen atoms are easily accessible for further coordination.

The first self-assembly process incorporates the four ligands B in the complex [FeB3B]+* (2) and, at the same time, pre-organizes them in a disposition which enables further
metal ion coordination to the building module generated, for a higher order second self-assembly step.

The analytical data for the complex [FeII\textsubscript{4}A\textsubscript{11}11+] (1) are very similar to those obtained for complex 2 (see Experimental Section) and point to an identical composition.

Synthesis and structures of the extended coordination architectures \{[FeII\textsubscript{4}A\textsubscript{4}]-(LaIII)\textsubscript{4}11+ (3) and \{[FeII\textsubscript{4}B\textsubscript{4}]-(AgI)\textsubscript{4}12+ (4): The generation of a second order coordination assembly was achieved by connecting the tetranuclear grid modules [FeII\textsubscript{4}A\textsubscript{4}]11+ (1) through binding of lanthanum(III) ions. The reaction was performed by layering an acetonitrile solution of 1 (as its ClO\textsubscript{4}− salt) with a six-fold excess of a [La(ClO\textsubscript{4})\textsubscript{3}] in methanol resulting in deep-green, triangular-shaped crystals of assembly 3. Elemental analysis of these crystals point to a \{[FeII\textsubscript{4}A\textsubscript{4}]-(LaIII)\textsubscript{4}11+ (3) composition with additional sixteen water and two acetonitrile molecules. Single crystal X-ray investigations reveal an one-dimensional columnar motif involving aligned alternating [FeII\textsubscript{4}A\textsubscript{4}]11+ and coordinated LaIII ions. The data reveal the tetranuclear FeII\textsubscript{4} modules, interconnected in a linear fashion by the coordination of a LaIII ion to two four-fold sets of 3-pyridyl groups above and below the FeII\textsubscript{4} plane of two neighbouring modules. Unfortunately, due to the bad quality of the crystals and despite several attempts to improve the quality of the data, the resulting elevated R factor does not allow a more detailed discussion of the molecular structure of \{[FeII\textsubscript{4}A\textsubscript{4}]-(LaIII)\textsubscript{4}11+ (3). However, the overall motif described above is secure.

To achieve a second order assembly of module [FeII\textsubscript{4}B\textsubscript{4}]12+ (2), a solution of its BF\textsubscript{4}− salt in acetonitrile was layered with a solution of methanol containing six equivalents of AgBF\textsubscript{4}. After several weeks, pine-green prisms of compound 4 had grown at the diffusion interface of the two solutions. The overall composition of the compound was determined as \{[FeII\textsubscript{4}B\textsubscript{4}]12+(Ag\textsubscript{4})\textsubscript{5}(BF\textsubscript{4})\textsubscript{3}(SiF\textsubscript{6})\} by elemental analysis and its structure was determined by X-ray investigations of the crystalline material. The structure of the cationic [FeII\textsubscript{4}B\textsubscript{4}]12+ subunits within 4 is of \{[2 \times 2]\} grid type, very similar to that determined for 2 with Fe–N bond lengths of d(Fe–N) = 1.890(7)–2.092(6) Å, indicating the presence of exclusively FeIIII(LS) ions at 120 K. All eight exo-4-pyridyl groups of each [FeII\textsubscript{4}B\textsubscript{4}]12+ unit were coordinated to AgI ions (Figures 1 and 3). Attempts to dissolve the complex in polar solvents (DMF, DMSO) resulted in the break-up of 4 into the tetranuclear [FeII\textsubscript{4}B\textsubscript{4}]12+ units and solvated AgI ions.

The AgI ions are coordinated in an approximately linear coordination manner with d(Ag–N) = 2.130(12)–2.228(14) Å; α(N-Ag-N) = 166.4(7) and 168.8(8)°, and interconnect successive tetranuclear [FeII\textsubscript{4}B\textsubscript{4}]12+ units through four pyridine–Ag–pyridine bridges. Following this coordination scheme, an infinite coordination polymer is generated.
as a meander-like interwoven, two-dimensional network (Figure 3). Within this wall-like array, the [FeII₄B₄]⁸⁺ building modules are aligned in rows at 2.15 nm apart, while the distance between two neighbouring “walls” is about 1.56 nm. The central and peripheral cavities within the [FeII₄B₄]⁸⁺ units, but not the hollow space around the AgI ions, are filled with the BF₄⁻ anions and solvent molecules (Figure 3).

Magnetic properties of the units 1 and 2 and of the assemblies 3 and 4: The magnetic properties of module [FeII₄A₄](ClO₄)₈ (1) and of the extended assembly {[FeII₄A₄]-(LaIII)}(ClO₄)₁₁₉ (3) are represented in Figure 4a as $\chi_M T/4$ versus T plots, χ_M being the molar magnetic susceptibility, corrected for diamagnetic contributions ($\chi_D = -357.8 \times 10^{-6}$ cm³mol⁻¹) using Pascal’s constants, and T the temperature. At room temperature, $\chi_M T/4$ of 1 is equal to 3.2 cm³Kmol⁻¹, close to the spin-only value expected for four high-spin FeII ions. On lowering the temperature, $\chi_M T/4$ progressively decreases reaching a value of 1.2 cm³Kmol⁻¹ at 30 K, calling for the presence of one to two HS FeII ions. At room temperature, $\chi_M T/4$ drops, which can be attributed to zero-field splitting of the FeII(HS) ions. Below this temperature, the whole magnetic curve is shifted towards stabilization of the LS state (Figure 4a). At low temperature, below 50 K, a plateau with almost no remaining magnetic moment and the absence of any FeII(HS)-based zero-field splitting indicates a completely diamagnetic situation only involving four FeII(LS) (each with $S = 0$). At room temperature, a maximum value of 1.8 cm³Kmol⁻¹ evokes an incomplete spin transition in accordance with the shift of T_c to higher temperatures.

The magnetic properties of module [FeII₄B₄](BF₄)₆ (2) and its assembly {[FeII₄B₄]-(AgI)₄}(BF₄)₁₂₀ (4) are represented in Figure 4b. At room temperature, $\chi_M T/4$ for 2 is equal to 2.4 cm³Kmol⁻¹ and thus in the range of values expected for three HS and one LS

Figure 3. X-ray single crystal structure of {[FeII₄B₄](AgI)}₁₂⁺ (4) displaying the wall-like 2D interconnection of the [FeII₄B₄]⁸⁺ [2×2] grid-type building modules (red) by the AgI ions (green): a) cross section; b) frontal elevation of the 2D wall-like array (anions and solvent molecules are omitted for clarity; carbon: grey, nitrogen: blue, iron: red).

Figure 4. $\chi_M T/4$ versus temperature plots of a) the module [FeII₄A₄](ClO₄)₈ (1) and the columnar assembly {[FeII₄A₄]-(LaIII)}(ClO₄)₁₁₉ (3); b) the module [FeII₄B₄](BF₄)₆ (2) and the wall-like assembly {[FeII₄B₄]-(AgI)₄}(BF₄)₁₂₀ (4).
Fe ions; it decreases on lowering the temperature reaching a value of 1.4 cm³Kmol⁻¹ at 30 K, calling for the presence of two Fe(HS)(HS) ions. The magnetic data show a very gradual and, in comparison with 1, a very incomplete spin transition process as already observed for other members of this class of compounds.[9]

The magnetic behaviour of the two-dimensional, wall-like assembly 4 ([Fe₂⁺B₄⁺(Ag⁺)₄]⁺(BF₄)⁻2₁₂mol is shown in Figure 4b. At room temperature, χmT/4 of 4 is equal to 1.4 cm³Kmol⁻¹ which is significantly lower than found for the constituting complex 2 itself and points at a magnetic situation involving two Fe⁺(LS) and two Fe⁺(HS) ions. On lowering the temperature the magnetic moment of 4 remains almost unchanged before showing a slight increase to χmT/4 = 1.5 cm³Kmol⁻¹ at T = 30 K. Below that temperature, once more, a sharp drop due to the zero field splitting of Fe⁺(HS) ions is observed.[10]

The spin transition in the assembly 4 is, in comparison with module 2, inhibited over the whole temperature range studied, possibly due to steric hindrance in the inter-connected, two-dimensional network. Since the conversion of Fe⁺(LS) to Fe⁺(HS) is accompanied by a volume increase, each spin transition would have to expand against the, more rigid, 2D network of 4.[11,12] As a result, the magnetic moment remains close to the value of the non-bridged “monomer” 2 at low temperature (30 K). The observed slight decrease of the χmT versus T curve between 300 and 150 K may be due to weak antiferromagnetic intramolecular interaction as already observed in the analogous [Co₂(C₆H₄)]⁺⁺ compounds.[8] The increase of γT below about 150 but above 30 K, might result from ferromagnetic intermolecular exchange coupling between the neighbouring 2D-networks (Figure 4b), although such coupling should be very weak over a distance of 15 Å.

Conclusion

The present results show that hierarchically ordered self-assembly processes using suitably designed molecular components can be implemented to construct the metallasupramolecular [2×2] grid-type modules [Fe₄⁺A₄⁺]⁺⁺ (1) and [Fe₄⁺B₄⁺]⁺⁺ (2), presenting spin transition behaviour and displaying a collectively generated coordination array, that prepares the structural prerequisites enabling 1 and 2 to undergo a second self-assembly process. This second process leads in both cases to an extended architecture displaying either a one-dimensional columnar {[Fe₄⁺A₄⁺(L₄⁺)]⁺⁺}n⁺⁺ (3), or a two-dimensional wall-like {[Fe₂⁺B₄⁺(Ag⁺)₄]⁻⁺}₁²⁺ (4) arrangement. In both higher-order architectures, the magnetic behaviour of the [Fe₂⁺L₄⁺]⁺⁺ modules exhibits a progressive hindrance of the spin transition process with increasing dimensionality.

The generation and variation of a certain molecular functionality (here magnetism) at different organisational levels, as realized here in the supramolecular spintronic modules 1/2 and arrays 3/4, show how the architectural parameters feed-back actively on intrinsic functionalities of complex supramolecular assemblies. It relates to the progressive build-up of functional nanostructured supramolecular devices by sequential self-organization, with concomitant emergence of novel (optical, electronic, magnetic) properties at different levels of system complexity.[11]

Experimental Section

Synthesis of complexes 1 and 2: A solution of ligand A[11] (30 mg, 48 μmol) (or B[11]) and [Fe(BF₄)₂]SC₂H₄H₂O (16 mg, 48 μmol) in acetone (50 mL) was stirred under reflux for 12 h. Complex 1 (or 2) was isolated, respectively, as dark green solid by precipitation with diisopropyl ether in quantitative yields (18.0 mg).

The ClO₄ salts of 1 and 2 were synthesized by the same procedure by using [Fe(CIO₄)₂]SC₂H₄H₂O. The products obtained exhibit identical spectroscopic properties as the BF₄ salts.

Synthesis of assemblies 3 and 4

[Fe₄⁺A₄⁺(La⁺)₄]ClO₄·DMF (3): A solution of ligand A[11] (30mg, 87 μmol) in CH₃CN was layered with a solution of a six-fold excess of AgBF₄·2H₂O. The mixture was stirred under reflux for 12h and the two solutions. An amount of 4.8mg (1.1 mol) of 3-AgBF₄·2H₂O: C 55.77, H 3.59, N 15.18; found: C 55.40, H 3.63, N 15.11.

Synthesis of assemblies 3 and 4

Expressions for C160H104N32B8Fe4F32SC2DP19H2O: C 51.45, H 3.83, N 12.00; found: C 51.47, H 3.6, N 11.7; for (the perchlorate salt C53H68Fe3Cl₂Fe2Cl₂·3CH₃CN·4H₂O: C 54.05, H 3.31, N 12.0; found: C 54.00, H 3.32, N 11.18.

Magnetic measurements: They were carried out with a SQUID magnetometer working in the 4.2–300 K temperature range. The applied magnetic field was 1 Tesla. FAB mass spectra were performed on a Fisons TRIO-2000 (Manchester) and a Micromass AUTOSPEC-MHF spectrometer using 3-nitrobenzylic alcohol as matrix. Microanalyses were carried out by the Service de Microanalyse, Faculté de Chimie, Strasbourg.
recorded with a Bruker Smart 6500 camera and a Si(111) monochromat-
ed wavelength of 0.45085 Å. The data were integrated with the Bruker
data reduction suite Saint and the absorption correction applied via
SADABS. Structure solution was performed by direct methods
(SHELXS) and refinement against \(F^2 \) (SHELXL). The hydrogen atoms
were refined with a riding model. As the small size, poor diffracting
power of the crystals and volatility of the incorporated solvent molecules
led to a low number of strong observations, geometric constraints were
applied in order to keep the data/parameter ratio acceptable. The final
structures are relatively low resolution and quality, contain disordered
counters and solvent molecules and probably lack further solvent mol-
ecules, the positions of which could not be resolved.

The perchlorate salt of 2 was recrystallized by vapour diffusion of ben-
zoene into a nitromethane solution of 2 and the obtained green crystals
were used in the X-ray investigations.

X-ray structural data for 2: A suitable green prism (0.02 × 0.02 × 0.04
mm) of \([\text{C}_{160}\text{H}_{104}\text{N}_{32}\text{Fe}_4\text{Ag}_4]^{12}\)
was obtained from nitromethane/benzene. Complex 2 (at 120 K) monoclinic,
\(\text{C}_{2} / c \), \(a = 17.0919(19), b = 43.104(3), \ m \).
was 10676 and had \(I > 2 \sigma(I) \). The final R values were \(R = 0.1120, wR^2 = 0.2588 [I > 2 \sigma(I)] \), \(R = 0.1271, wR^2 = 0.2662 \) (all data) for
1348 parameters and 454 restraints. A final difference map displayed the
highest electron density of 0.983 e Å\(^{-3} \). Crystals of 4 were obtained by
layering a solution of the BF\(_4\) salt of 2 in acetonitrile with a solution of methanol containing six equivalents of AgBF\(_4\). After several weeks, pine-green crystals of compound 4 had
grown at the diffusion interface of the two solutions.

X-ray structural data for 4: Green prisms (0.01 × 0.01 × 0.03 mm) of
\([\text{C}_{160}\text{H}_{104}\text{N}_{32}\text{Fe}_4\text{Ag}_4}]^{12+} \text{SiF}_6^{2-} \times 2 \text{CH}_3\text{CN} \times 1.4 \text{H}_2\text{O} \) obtained
from acetonitrile/methanol. Complex 4 (at 120 K) monoclinic, \(\text{C}_{2} / c \), \(a = 17.0919(19), b = 43.104(3), \ c = 30.9306(18) \). \(\beta = 99.248(3), \ V =
22348(2) \) Å\(^3\). \(Z = 4, \ \rho_{calc} = 1.276 \) g cm\(^{-3}\). \(2\theta_{max} = 24.68^\circ \), \(\mu(\text{MoK} \alpha) = 0.365 \) mm\(^{-1}\). Of 42249 collected reflections, 11311 were unique and
8279 had \(I > 2 \sigma(I) \). The final R values were \(R = 0.1200, wR^2 = 0.2976 [I > 2 \sigma(I)] \), \(R = 0.1528, wR^2 = 0.3050 \) (all data) for 1470 parameters and 2844
restraints. Although the SiF\(_6\)\(^{2-}\) anions were not introduced initially, they probably form by reaction with the glass container when BF\(_4\) ions are present and are incorporated in the crystals. This is not uncommon (see
for instance ref. \[10\].)

CCDC-238750 (2) and -238751 (4) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystals-
tographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: (+44)1223-336033; or email: deposit@ccdc.cam.ac.uk.

Acknowledgement

This work was partly funded by the TMR Research Network EUR-
FMRX-CT98-0199 entitled “Thermal and Optical Switching of Molecular
Spin States (TOSS)”. M.R. would like to thank the “Deutscher Akade-
emische Austauschdienst” (DAAD) for a postdoctoral scholarship. We
also acknowledge financial support from the Deutsche Forschungsge-
meinschaft within the Priority Program 1137 “Molecular Magnetism”.

Received: June 6, 2004
Published online: November 18, 2004